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 Summary 
 The growing global demand for digital products and services is increasing energy needs 
 and their associated climate impacts. AI technologies are contributing to this challenge, 
 due to the need for energy-intensive computing hardware, usually housed in data 
 centers, to train and deploy AI models. 

 One approach to addressing this is improving AI model efficiency: reducing the amount 
 of computing power that AI models require for training and real world use, while 
 maintaining or increasing their performance. 

 A range of techniques are emerging to achieve this, across model design, pre-training, 
 data efficiency, fine-tuning, model compression, and hardware optimization. While 
 there are some trade-offs to be navigated, such as ensuring efforts to reduce model 
 size do not reduce model accuracy, research focused on increasing model efficiency 
 demonstrates that bigger is not always better – or even necessary – when it comes to AI 
 models. 

 Work to improve model efficiency may also mark a potential shift away from ever-larger 
 models, with smaller, more efficient models increasingly matching or outperforming 
 larger ones. This trend is driven by financial cost considerations, hardware availability 
 and optimization, energy demand concerns, and efforts to democratize AI access across 
 regions with limited resources. 

 This policy primer outlines some of the challenges around measuring AI model 
 efficiency systematically, and the techniques being developed to improve model 
 efficiency. It focuses on work that can be done at the model developer layer, as 
 opposed to the hardware or energy supply layers. It concludes with a range of 
 considerations for those working to develop, deploy, or govern AI models: 

 1.  Match model size to task requirements, avoiding oversized solutions for simple 
 problems. 

 2.  Develop and adopt standardized methods for measuring and reporting model 
 efficiency. 

 3.  Support the trend toward smaller models by prioritising research and development 
 efforts that advance model efficiency. 
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 1. Introduction 
 Increasing global energy demands and their associated climate impacts are one of the most 
 pressing challenges for current societies. One contributing factor to this challenge is the 
 increasing energy requirements of digital products and services, largely due to their reliance on 
 energy-intensive data centers. The increasing adoption of AI models and systems at scale is 
 contributing to these growing energy demands. 1

 From 2017-2021 the electricity used by Meta, Amazon, Microsoft, and Google was estimated to 
 have more than doubled,  and global data center electricity  consumption has grown by 20-40% 2

 annually to now total between 1 and 1.3% of global energy demand and 1% of greenhouse gas 
 emissions.  The International Energy Agency predicts  that data center energy consumption 3

 could grow to more than 1,000TWh in 2026, more than double the 440TWh in 2022. 4

 While the evidence around how much AI is driving increased energy and carbon intensity is still 
 nascent, one estimate suggests AI causes 10-20% of data center electricity consumption as of 
 May 2024.  This is a product of the computing hardware  required to develop and run AI models, 5

 known as “compute”, such as energy-intensive GPUs housed in data centers.  AI training 6

 compute increased 300,000x from 2012-2018  , and it  is likely that the growing volume of 7

 compute used in training AI models and enabling their at-scale deployment could have big 
 implications for energy use and associated climate impacts, such as carbon emissions and 
 water usage.  ,  This growing energy demand of AI  compute places strain on local and national 8 9

 9  Li, P. et al. (2023) ‘Making AI Less “Thirsty”: Uncovering and Addressing the Secret Water Footprint of AI Models’. arXiv. 
 http://arxiv.org/abs/2304.03271  . 

 8  Treviso, M. et al. (2023) ‘Efficient Methods for Natural Language Processing: A Survey’. arXiv. 
 https://doi.org/10.48550/arXiv.2209.00099  . 

 7  Schwartz, R. et al. (2019) ‘Green AI’. arXiv.  https://doi.org/10.48550/arXiv.1907.10597  . 

 6  Hooker, S. (2020) ‘The Hardware Lottery’. arXiv.  https://doi.org/10.48550/arXiv.2009.06489  . 

 5  Electric Power Research Institute (2024)  Powering  Intelligence: Analyzing Artificial Intelligence and Data Center Energy 
 Consumption  .  https://www.epri.com/research/products/3002028905  . 

 4  International Energy Agency (2024) Electricity 2024, IEA.  https://www.iea.org/reports/electricity-2024/executive-summary  . 

 3  https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks 

 2  Ralph Hintemann and Simon Hinterholzer. 2022. Cloud computing drives the growth of the data center industry and its energy 
 consumption. Data centers 2022. 

 1  Treviso, M.  et al.  (2023) ‘Efficient Methods for  Natural Language Processing: A Survey’,  Transactions  of the Association for 
 Computational Linguistics  , 11, pp. 826–860.  https://doi.org/10.1162/tacl_a_00577  . 
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 energy infrastructure, creating tensions between meeting both rising data center demand and 
 continuing to supply homes, businesses, and critical services.  , 10 11

 Given this background, attention has turned towards how the increased use of AI technologies 
 is contributing to increased energy demand, and the associated impacts on both the global 
 climate and local and national electricity infrastructure. A key aspect of this is understanding 
 ways to reduce the compute demands of AI models and systems while maintaining (or 
 improving) their performance; i.e. increasing the efficiency of AI models and systems. This could 
 be a key component in reducing the energy demands and impacts of AI as it is increasingly 
 adopted around the world. 

 This policy primer explores recent research associated with understanding the energy demands 
 of AI model training and deployment, and efforts towards more efficient AI models as one 
 approach to mitigating their energy and associated climate impacts. This primer focuses on 
 research on model efficiency to draw insights for those working in policy and governance for 
 how to support efforts to reduce the energy and carbon impacts of AI models. 

 Note: the climate and environmental impacts of AI models go beyond energy consumption for 
 training and deployment, including aspects such as embodied carbon of physical hardware and data 
 centers. This primer focuses primarily on the impacts of the models themselves to focus the scope. 

 2. Understanding AI Energy Requirements 
 Training frontier AI models involves performing billions of computing operations.  These 12

 operations are resource intensive and require large-scale, specialized hardware, usually housed 
 in data centers. Measuring the total amount of energy used by this hardware to train an AI 
 model, and the associated carbon emissions, is challenging to do accurately, and there are few 
 studies which explore this, especially for recent models.  ,  For example, one estimate suggests 13 14

 training GPT-3 (a model released in 2020 with 175 billion parameters) consumed 1287 MWh of 
 electricity, and resulted in carbon emissions of 502 metric tons of carbon.  However, it is 15

 difficult to systematically analyse or compare model training energy use because of the lack of 
 shared hardware and differences in approaches to training. Beyond the impacts of training AI 
 models, the deployment of AI models – for example in widely-used consumer facing services or 
 in large-scale organisational processes – also adds to the energy and carbon costs of data 

 15  Patterson, D.  et al.  (2021) ‘Carbon Emissions and  Large Neural Network Training’. arXiv. 
 https://doi.org/10.48550/arXiv.2104.10350  . 

 14  Luccioni, A.S., Viguier, S. and Ligozat, A.-L. (2022) ‘Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language 
 Model’. arXiv.  https://doi.org/10.48550/arXiv.2211.02001  . 

 13  Strubell, E., Ganesh, A. and McCallum, A. (2019) ‘Energy and Policy Considerations for Deep Learning in NLP’. arXiv. 
 https://doi.org/10.48550/arXiv.1906.02243  . 

 12  Hooker, S. (2024) ‘On the Limitations of Compute Thresholds as a Governance Strategy’. arXiv.  http://arxiv.org/abs/2407.05694  . 

 11  Jackson, A. (2024)  Power-Hungry Data Centres Put  Pressure on Ireland’s Grid  . 
 https://datacentremagazine.com/critical-environments/power-hungry-data-centres-put-pressure-on-irelands-grid  . 

 10  Coskun, A. (2024)  AI supercharges data center energy use – straining the grid and slowing sustainability efforts  ,  The 
 Conversation  . 
 http://theconversation.com/ai-supercharges-data-center-energy-use-straining-the-grid-and-slowing-sustainability-efforts-23 
 2697  . 
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 centers.  ,  These deployment impacts are more important to address because “models are 16 17

 generally trained only once, while they are used for inference thousands if not millions of 
 times”.  “Inference” refers to when a trained AI model  makes predictions, classifications, or 18

 decisions to produce outputs based on new data; in other words, inference is the name given to 
 the operations AI models perform when they are used in practice. The energy costs of 
 individual model inferences are relatively small, estimated to range from 0.002 kWh for every 
 1000 text classification inferences, to 0.047kWh per 1000 text generation inferences or 2.907 
 kWh per 1000 image generation inferences.  ,  While  these numbers seem small, the cost of 19 20

 deployment would surpass training within “a few weeks” for models that are used in high 
 volume. 21

 Difficulties Measuring Energy Use in a Standardized Way 

 The word ‘estimated’ used so far to refer to AI models’ energy use and carbon impacts in this 
 section is key: measuring a model’s energy use is non-trivial. This is due to a range of challenges 
 to accurately measuring an AI model’s energy use, such as different hardware types having 
 different energy requirements, and different data centers relying on different energy sources.  , 22

 Because of this complexity, there is a lack of standardized  methodologies for quantifying and 23

 comparing energy consumption and carbon emissions of AI models. A handful of tools and 
 techniques have emerged, such as Code Carbon  or LLM-Carbon.  However, all take different 24 25

 approaches, so their results can’t be systematically compared.  Additionally, many existing 26

 approaches to measure model efficiency only capture certain aspects and do not correlate, 
 meaning developers lack a comprehensive way to measure and report model efficiency.  One 27

 effort to address this challenge is the AI Energy Star project, which aims to “help developers and 
 users of AI models to take energy consumption into account by testing a sufficiently diverse 
 array of AI models for a set of popular use cases to establish an expected range of energy 
 consumption, and then rate models depending on where they lie on this range.” 28

 Despite these challenges related to accurately measuring the energy use and therefore carbon 
 impacts of AI models, it is clear AI model training and use is energy intensive. While efforts to 
 systematically understand the energy requirements of AI models are still nascent, they already 
 offer useful insights by highlighting the factors that influence AI models’ energy consumption. 

 28  Luccioni, S.  et al.  (2024) ‘Light bulbs have energy  ratings — so why can’t AI chatbots?’,  Nature  , 632(8026),  pp. 736–738. 
 https://doi.org/10.1038/d41586-024-02680-3  . 

 27  Dehghani, M.  et al.  (2022) ‘The Efficiency Misnomer’.  arXiv.  https://doi.org/10.48550/arXiv.2110.12894  . 

 26  Luccioni, A.S., Jernite, Y. and Strubell, E. (2024) 

 25  Faiz, A.  et al.  (2024) ‘LLMCarbon: Modeling the end-to-end  Carbon Footprint of Large Language Models’. arXiv. 
 https://doi.org/10.48550/arXiv.2309.14393  . 

 24  See:  https://codecarbon.io/#about 

 23  Argerich, M.F. and Patiño-Martínez, M. (2024) 

 22  Treviso, M. et al. (2023) 

 21  Luccioni, A.S., Jernite, Y. and Strubell, E. (2024), p.9. 

 20  Argerich, M.F. and Patiño-Martínez, M. (2024) 

 19  Luccioni, A.S., Jernite, Y. and Strubell, E. (2024) ‘Power Hungry Processing: Watts Driving the Cost of AI Deployment?’ 
 https://doi.org/10.1145/3630106.3658542  . 

 18  Argerich, M.F. and Patiño-Martínez, M. (2024) ‘Measuring  and Improving the Energy Efficiency of Large Language Models 
 Inference’, IEEE Access, 12, pp. 80194–80207.  https://doi.org/10.1109/ACCESS.2024.3409745  . 

 17  Wu, C.-J.  et al.  (2024) ‘Beyond Efficiency: Scaling  AI Sustainably’,  IEEE Micro  , pp. 1–8.  https://doi.org/10.1109/MM.2024.3409275  . 

 16  Luccioni, A.S., Jernite, Y. and Strubell, E. (2024) ‘Power Hungry Processing: Watts Driving the Cost of AI Deployment?’ 
 https://doi.org/10.1145/3630106.3658542  . 
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 The next section explores how these factors can be targeted in ways that reduce models’ 
 energy requirements while maintaining – or improving – model performance. In other words, 
 increasing models’ efficiency. 

 3. Improving Model Efficiency 
 For LLMs in particular, there are a range of different techniques that model developers can 
 apply to yield efficiency gains made across the entire lifecycle, from training to deployment.  , 29 30

 These include (but are not limited to) the following: 
 ●  Model design  : Model builders and developers can make  choices about different model 

 architectures, and ways to optimize them, to reduce compute requirements. For 
 example, architectures such as transformers  or state-space  models (SSMs), offer 31

 different efficiency advantages.  To optimize an architecture,  techniques such as 32

 Mixture of Experts (MoE) can be applied, which uses a collection of specialized 
 sub-models, or ‘experts’, to enhance overall performance without increasing the 
 computational burden.  This works by passing inputs  through only certain parts of a 33

 model, rather than the whole neural network.  Other  optimization methods include 34

 multi-query attention and grouped-query attention, which improve how inputs are 
 processed across transformer models’ attention heads. 35

 ●  Training and data efficiency  : at the pre-training  stage, techniques to improve how 
 data is used can reduce the compute required to train a model. This includes data 
 pruning which removes low-quality data points from training datasets that don't 
 contribute highly to the model learning process,  ,  as well as data deduplication which 36 37

 eliminates repeated content, leading to better performance and faster convergence. 38

 Additionally, strategic choices made during pre-training can minimize issues that can 
 arise later when attempting to compress the model, for example, training a model to 
 tolerate large levels of compression.  One of the  biggest impacts for pretraining 39

 efficiency is automating the exploration of data mixes and parameter architectures to 
 find a suitable combination before scaling it up - via a process known as fast 
 hyperparameter exploration.  Another technique that  can be employed to improve 40

 40  Paul, S., Kurin, V. and Whiteson, S. (2019) ‘Fast Efficient Hyperparameter Tuning for Policy Gradient Methods’. 
 https://www.cs.ox.ac.uk/people/shimon.whiteson/pubs/paulnips19.pdf 

 39  Ahmadian, A.  et al.  (2023) ‘Intriguing Properties  of Quantization at Scale’. arXiv.  https://doi.org/10.48550/arXiv.2305.19268  . 

 38  Hernandez, D.  et al.  (2022) ‘Scaling Laws and Interpretability  of Learning from Repeated Data’. arXiv. 
 https://doi.org/10.48550/arXiv.2205.10487  . 

 37  Chimoto, E.A.  et al.  (2024) ‘Critical Learning Periods:  Leveraging Early Training Dynamics for Efficient Data Pruning’. arXiv. 
 https://doi.org/10.48550/arXiv.2405.19462  . 

 36  Marion, M.  et al.  (2023) ‘When Less is More: Investigating  Data Pruning for Pretraining LLMs at Scale’. arXiv. 
 http://arxiv.org/abs/2309.04564  . 

 35  Aryabumi, V.  et al.  (2024) ‘Aya 23: Open Weight Releases  to Further Multilingual Progress’. arXiv. 
 https://doi.org/10.48550/arXiv.2405.15032 

 34  Google, Gemma Team (2024) ‘Gemma: Open Models Based on Gemini Research and Technology’. arXiv. 
 https://doi.org/10.48550/arXiv.2403.08295  . 

 33  Gritsch, N.  et al.  (2024) ‘Nexus: Specialization  meets Adaptability for Efficiently Training Mixture of Experts’. arXiv. 
 https://doi.org/10.48550/arXiv.2408.15901  . 

 32  Gu, A. and Dao, T. (2024) ‘Mamba: Linear-Time Sequence Modeling with Selective State Spaces’. arXiv. 
 https://doi.org/10.48550/arXiv.2312.00752  . 

 31  Vaswani, A.  et al.  (2023) ‘Attention Is All You Need’.  arXiv.  http://arxiv.org/abs/1706.03762  . 

 30  Wu, C.-J.  et al.  (2024) ‘Beyond Efficiency: Scaling  AI Sustainably’,  IEEE Micro  , pp. 1–8.  https://doi.org/10.1109/MM.2024.3409275  . 

 29  Treviso, M. et al. (2023) 
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 efficiency is ‘model distillation’, which involves training a smaller "student" model to 
 mimic the behavior of a larger "teacher" model, enabling the smaller model to increase 
 performance while maintaining a smaller size. 41

 ●  Fine-tuning  : in fine-tuning, techniques can be applied  to limit weight updates to a 
 smaller subset of parameters, reducing memory and computational demands. This is 
 known as ‘parameter efficient finetuning' (PEFT). These techniques include applying 
 “adapters” - a small number of new parameters tuned for specific tasks - or prompt 
 tuning which guides parameter updates towards only the parameters most relevant to 
 the prompt. 42

 ●  Inference  and  compression  : To enhance inference efficiency,  models can be 
 compressed to reduce size dramatically while maintaining performance. Techniques 
 include ‘pruning’, which removes redundant model weights within the model and 
 ‘quantization’ which represents parameters using a smaller number of bits, allowing for 
 faster computation and requiring less memory.  ,  These techniques can have a 43 44

 significant impact on memory requirements, resulting in requiring less hardware since 
 the model can be squeezed into fewer GPUs, which is one of the most impactful ways to 
 improve energy efficiency. 

 ●  Hardware:  Dedicated AI hardware like GPUs or TPUs  can accelerate training and 
 inference. General-purpose hardware like CPUs can offer greater flexibility but often are 
 slow at processing machine learning workloads. When choosing hardware, factors like 
 memory capacity, processing power, and support for different data precision formats 
 should be carefully considered. This is a double edged-sword: while it suggests 
 opportunities to optimize certain hardware for certain models and functions, it can 
 mean that attempts to run models or processes on other hardware, for example 
 because optimal hardware is not available or too costly, leads to reduced efficiency.  , 45 46

 It is important to note that techniques to improve model efficiency are not trade-off free. 
 Efforts to make large language models (LLMs) smaller and faster can actually harm the 
 performance of LLMs in certain languages and for specific tasks. This is because techniques like 
 pruning and quantization, can target parts of the model that are focused towards infrequent, 
 but not necessarily insignificant data patterns.  This is particularly acute for the “long-tail” of 47

 data – the less frequent or prevalent patterns within a dataset – which often includes 
 low-resource languages or under-represented demographic groups.  ,  Researchers and model 48 49

 developers must therefore carefully balance how to increase efficiency with performance, 
 focusing on what  kinds  of performance must be retained  if accuracy is compromised as models 
 are pruned or compressed. 

 49  Ahia, O., Kreutzer, J. and Hooker, S. (2021) ‘The Low-Resource Double Bind: An Empirical Study of Pruning for Low-Resource 
 Machine Translation’. arXiv.  https://doi.org/10.48550/arXiv.2110.03036  . 

 48  Hooker, S. (2021) ‘Moving beyond “algorithmic bias is a data problem”’,  Patterns  , 2(4), p. 100241. 
 https://doi.org/10.1016/j.patter.2021.100241  . 

 47  Hooker, S.  et al.  (2020) ‘Characterising Bias in  Compressed Models’. arXiv.  https://doi.org/10.48550/arXiv.2010.03058  . 

 46  Hooker, S. (2020) ‘The Hardware Lottery’. arXiv.  https://doi.org/10.48550/arXiv.2009.06489  . 

 45  Mince, F. et al. (2023) ‘The Grand Illusion: The Myth of Software Portability and Implications for ML Progress’. arXiv. 
 http://arxiv.org/abs/2309.07181  . 

 44  Ogueji, K. et al. (2022) ‘Intriguing Properties of Compression on Multilingual Models’.  https://doi.org/10.48550/arXiv.2211.02738  . 

 43  Ahmadian, A. et al. (2023) ‘Intriguing Properties of Quantization at Scale’. arXiv.  https://doi.org/10.48550/arXiv.2305.19268  . 

 42  Zadouri, T. et al. (2023) ‘Pushing Mixture of Experts to the Limit: Extremely Parameter Efficient MoE for Instruction Tuning’. 
 arXiv.  https://doi.org/10.48550/arXiv.2309.05444  . 

 41  Aryabumi, V.  et al.  (2024) ‘Aya 23: Open Weight Releases to Further Multilingual Progress’. arXiv. 
 https://doi.org/10.48550/arXiv.2405.15032  . 
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 Nevertheless, applying techniques such as these can reduce the compute required to run an AI 
 model, and therefore reduce the energy demands and any associated carbon or other climate 
 impacts. But model efficiency matters for more than just energy demands and carbon. 
 Increasingly large-scale and compute-intensive AI models also present barriers to access, as 
 many researchers and organizations lack the resources, funding, or skills to access and make 
 use of large-scale models, because they cannot afford to build their own compute 
 infrastructure at-scale to run models themselves, or because access to commercial model APIs 
 is financially prohibitive.  This means that many  potential beneficial applications of AI models 50

 may be disproportionately distributed, with well-resourced organizations in developed nations 
 making use of AI, while communities in less-developed regions remain underserved. 

 Addressing the AI Access Gap 
 At Cohere For AI, in addition to advancing fundamental research on model efficiency, 
 we develop resources and provide support to widen access to AI models, such as 
 through our  Aya models and datasets  and our  Grants  Program  . 

 Aya is a multi-year, global initiative to advance the state-of-the-art in multilingual AI 
 and bridge gaps between people and cultures across the world. Involving over 3,000 
 independent researchers across 119 countries, Aya is an open science project to 
 create new models and datasets that expand the number of languages covered by AI. 
 To date, we have released a family of 3 models, which we have released openly and 
 optimized for efficiency, so that they can be used without the need for 
 high-performance compute. 

 Our Grants Program addresses the fact that access to the resources needed to 
 conduct machine learning research, such as compute and state-of-art large language 
 models (LLMs), is not always evenly distributed. Not all research institutions have their 
 own compute clusters or expertise to run models, and many existing research grants 
 don’t allow researchers to spend their funds on accessing proprietary models. This is 
 especially acute for researchers outside of well-funded institutions and labs (largely in 
 North America), but it is also the case for many researchers outside of computer 
 science departments who want to apply LLMs to their research fields – from health to 
 education. In an effort to help narrow this gap, Cohere For AI  launched our Research 
 Grant program in July 2023. These grants provide academic researchers and 
 developers with subsidized access to the Cohere API to support their research into 
 advancing safe, responsible LLM capabilities and applications. An added benefit of 
 such approaches is that instead of different organizations serving their own models 
 individually, large organizations like Cohere offer optimized inference for models, 
 meaning much more efficient utilization of compute and power. 

 50  Ahia, O., Kreutzer, J. and Hooker, S. (2021) ‘The Low-Resource Double Bind: An Empirical Study of Pruning for Low-Resource 
 Machine Translation’. arXiv.  https://doi.org/10.48550/arXiv.2110.03036  . 
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 4. Trends Towards Smaller Models 
 The very recent history of AI development has focused on larger and more compute-intensive 
 models. This is because, to-date, performance increases have generally come from increasing 
 the size and scale of a model: in effect “throwing compute” at the problem.  However, this 51

 trend is shifting. While in the near- to medium-term it is likely that models will continue to get 
 larger as researchers scale compute to continue making performance gains, it is likely that 
 increasingly smaller, more task-specific, and therefore more efficient models will start to 
 emerge as methods for increasing efficiency continue to advance. This is evidenced by recent 
 trends of smaller models matching or outperforming larger ones, as seen in submissions to the 
 OpenLLM leaderboard since April 2022.  This is also  exemplified by Cohere For AI’s own 52

 multilingual model, Aya Expanse, which is an open-weight 32bn parameter model that 
 outperforms several significantly larger models on a range of languages, including Llama 
 (400bn parameters) and Mistral Large 2 (123bn).  , 53 54

 Smaller models submitted to the OpenLLM leaderboard from April 2022 to April 2024 show matching or increased 
 performance against many larger models. 

 There are several factors that may be motivating this trend towards more efficient models: 
 1.  Efforts to minimize financial costs associated with developing and deploying AI models, 

 in terms of hardware needed to run them and the energy needed to power that 
 hardware. 

 2.  Efforts to minimize the climate impact of AI models, in terms of the carbon emissions 
 associated with energy used for training and inference. 

 54  See: Scale AI’s SEAL leaderboard,  https://scale.com/leaderboard 

 53  Cohere For AI (2024) Aya Expanse: Connecting our world,  https://cohere.com/blog/aya-expanse-connecting-our-world 

 52  Hooker, S. (2024) ‘On the Limitations of Compute Thresholds as a Governance Strategy’. 

 51  Hooker, S. (2024) ‘On the Limitations of Compute  Thresholds as a Governance Strategy’. arXiv. 
 http://arxiv.org/abs/2407.05694  . p6. 
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 3.  Efforts to widen access to AI models for research and development across settings that 
 lack the resources (hardware, funding, talent) as well as enable deployment of AI models 
 to consumer or edge devices which have lower compute power. 

 While (1) is driven by market forces, such as commercial users seeking the most cost effective 
 option, that may not lead to (2) and (3) automatically. For example, model efficiency is not the 
 only contributing factor to AI’s energy and carbon impact – choices made by data center 
 providers about hardware types have an impact too, and are often outside of the control of 
 those developing and using models. Nevertheless, the benefits of improving model efficiency 
 remain, as efforts to reduce the computational requirements of models will scale as models are 
 deployed and widely. 

 5. Conclusion & Considerations 
 The growing energy demands of AI models and their associated climate impacts are a pressing 
 challenge. While methods to accurately and systematically measure AI models’ energy and 
 carbon intensity are still nascent, efforts to improve their efficiency are growing in their 
 effectiveness and maturity. A range of techniques, including those outlined in this primer, can 
 reduce the compute required to run an AI model, and therefore reduce its energy demands. 

 As AI models are increasingly deployed in practice and at scale across a range of real-world 
 applications, the approaches to developing improving model efficiency outlined in this paper 
 offer a range of considerations for those developing, using, and governing AI technologies: 

 1.  Match the size of the model to the scale of the task  .  Not all AI use cases require the 
 largest, most performant models: those adopting AI must be careful not to use 
 sledgehammers to crack nuts. It is crucial to ensure that the size of the model deployed 
 is proportionate to the scale of the task to which it is applied, which means calculating 
 models’ energy footprints and requirements. 

 2.  Standardize methods for measuring and reporting model efficiency.  To achieve (1), 
 model developers need to reduce models’ compute requirements, and AI adopters need 
 to choose the more efficient models. Key to this is developing standardized ways to 
 measure and report models’ compute or energy requirements. This will allow easy 
 comparison between models based on their efficiency. Initiatives such as AI energy 
 scores offer an approach towards this. 55

 3.  Advance efforts towards more efficient models.  Model  developers, AI adopters, 
 policymakers should continue to support efforts and make investments in model 
 efficiency across all layers of the stack, from hardware innovation to model architecture 
 choices and optimizations. This is key to not only managing AI energy and carbon 
 footprint, but also to enable broader access to AI for underresourced communities. 

 55  Luccioni, S.  et al.  (2024) ‘Light bulbs have energy  ratings — so why can’t AI chatbots?’,  Nature  , 632(8026),  pp. 736–738. 
 https://doi.org/10.1038/d41586-024-02680-3  . 
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