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Summary
Prominent AI governance frameworks around the world have specified thresholds
based on the amount of computing power used to train an AI model, measured in
floating-point operations (FLOPs). Models that exceed these thresholds are assumed to
pose a level of risk that requires additional reporting and scrutiny.

However, the appropriateness of these approaches is under debate among scientific
communities, in response to growing evidence that increased training compute does
not necessarily equate to increased risk. This is due to several factors:

1. Model capabilities and performance are affected by factors beyond just training
compute, including data quality, downstream model optimization techniques, and
algorithmic architectures.

2. The risks associated with AI models are affected by factors that are not accounted
for in training compute measures, such as characteristics of the datasets used in
model training, deployment context, and safety optimization.

Further complexities add to the limitations of compute-based thresholds, including
technical uncertainties about how FLOPs should be calculated, and the fact that current
training compute thresholds are not likely to be met by any existing models, meaning
that immediate and near-term risks may be overlooked.

The limitations of compute-based thresholds may have the following consequences
that hinder the ultimate goal of managing AI risk (in no particular order, and not an
exhaustive list):

● Incentives could be created for model developers to game compute thresholds
rather than meaningfully address risks.

● Regulatory scrutiny could be applied disproportionately to models over the
threshold that may not actually pose greater risk than models under the threshold.

● Resources and capacity of those working on AI safety could be diverted away from
near-term, real-world risks.

To address these limitations, policymakers could consider: adopting alternative or
complementary approaches to assessing which AI models should face greater
scrutiny, developing dynamic rather than static thresholds, andmore clearly
defining approaches to calculating and measuring FLOPs.

This policy primer provides an overview of evidence about the limitations of
compute-based thresholds, to support policymakers implementing risk-based
governance of AI models. The primer references technical concepts that are explored in
deeper detail in an essay by the Head of Cohere For AI, Sara Hooker.1

1Hooker, S. (2024) ‘On the Limitations of Compute Thresholds as a Governance Strategy’. arXiv. http://arxiv.org/abs/2407.05694.
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1. Background: The Role of Compute
Thresholds in AI Governance

As policymakers around the world work to develop appropriate governance frameworks for AI,
one of the many challenges lies in balancing the need to assess the risk of AI models and
systems with the required regulatory resources and developer capacity to undertake
assessment processes. If emerging governance frameworks get that balance wrong, there’s a
chance that either the risks of AI models are insufficiently addressed, or so many AI models
require a high-level of scrutiny that regulators become overwhelmed and AI developers do not
have room to innovate. To strike the right balance, the regulatory scrutiny applied to AI models
or systems must be proportionate to the risks associated with them.

In attempts to achieve this balance, both the White House Executive Order on AI Safety and the2

EU AI Act — two of the first policy instruments enacted to govern AI — detail thresholds that3

determine which AI models will be subject to higher levels of scrutiny. These thresholds are
based on the amount of computing power (compute) required to train an AI model, measured
in the number of integer or floating point operations (FLOPs). The White House Executive order4

sets this as 1026 FLOPs or 1023 FLOPs for models using biological sequence data, while the EU AI
Act specifies 1025 FLOPs for any general purpose AI (GPAI) model. If an AI model exceeds these5

5 The EUAI Act defines GPAI as follows: “AGPAImodelmeans an AImodel, including when trainedwith a large amount of data
using self-supervision at scale, that displays significant generality and is capable of competently performing a wide range of
distinct tasks, regardless of the way themodel is placed on themarket, and that can be integrated into a variety of downstream

4 Floating point operations (FLOPs) refers to the mathematical operations a computer performs. The term arose in the 1950s and
60s to provide a unit ofmeasure for computer processing speed and power.

3 European Commission (2024). The AI Act.
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138-FNL-COR01_EN.pdf.

2 TheWhite House (2023) Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence,
TheWhite House.
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustwor
thy-development-and-use-of-artificial-intelligence/.
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thresholds, it will be subject to a higher level of scrutiny and regulatory obligation under these
governance frameworks.

There are several reasons why policymakers setting thresholds to trigger extra scrutiny may
have looked to the amount of training compute. Training compute offers a quantifiable and6

externally verifiable metric that can be applied universally across different systems, it is a
measure commonly used in the field of machine learning and computer science, enabling
developers and researchers to assess hardware needs or compare models, often early in the AI
model development lifecycle. , These advantages of compute-based thresholds make them an7 8

appealing tool for policymakers seeking to manage the risks associated with AI systems.

However, compute-based thresholds are not without limitations. The following sections of
this primer outline these limitations and the evidence which underpins them, in an effort to
support policymakers develop and implement governance frameworks that effectively manage
AI risk.

8 Lennart Heim (2024) (Training) Compute Thresholds - Features and Functions in AI Governance.
https://heim.xyz/documents/Training-Compute-Thresholds.pdf.

7 Hooker, S. (2024) ‘On the Limitations of Compute Thresholds as a Governance Strategy’. arXiv. http://arxiv.org/abs/2407.05694.

6 In addition to compute-based thresholds, other governance and policy documents from around the world reference thresholds
as a key component in AI riskmanagement. For example, the Seoul Frontier AI Safety Commitments require the signatories to
“set out thresholds at which severe risks posed by amodel or system, unless adequatelymitigated, would be deemed intolerable.”
https://www.gov.uk/government/publications/frontier-ai-safety-commitments-ai-seoul-summit-2024/frontier-ai-safety-commi
tments-ai-seoul-summit-2024. This scope of this policy primer, however, focuses on compute-based thresholds, and does not
extend to explicitly address other types of risk threshold.

systems or applications. This does not cover AImodels that are used before release on themarket for research, development,
and prototyping activities.” https://artificialintelligenceact.eu/high-level-summary/.
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2. Limitations of Compute Thresholds
In risk-based approaches to technology governance, thresholds are a useful tool for setting the
boundaries of risk tolerance and triggering appropriate and proportionate safeguards or
mitigations. Such thresholds are applied with success in many techno-scientific fields, ranging
from healthcare, such as infant low birth-weight thresholds, to aviation, such as thresholds for9

the risk of collision between aircraft and obstacles near airports. In these cases, there are10

clear, well-evidenced, and direct or linear relationships between the threshold measure and the
risk of consequent harm.

The justification for current compute-based thresholds in AI is that they approximate the
amount of compute used in training the most advanced models to date, and as such “the
capabilities of the models above this threshold are not yet well enough understood [and] could
pose systemic risks.” In other words, the rationale underpinning compute-based thresholds is11

that the amount of training compute serves as a proxy for model capabilities, which in turn
indicate risk.

However, increasing evidence suggests that the relationship between training compute and
risk from AI models is not direct, and several limitations of compute-based thresholds lie
within the uncertain and complex relationship between training compute, model
capability, and risk.12

The following section details some of these limitations and the evidence underpinning our
understanding of them. This evidence relates to two crucial relationships that require greater
scrutiny: first that training compute equals model capability, and second that model capability
is the primary determinant of model risk.

2.1 Compute =/= Capability: Factors Beyond Compute Affect Model
Capability
The notion that greater training compute results in greater model capability and performance is
largely a product of the fact that this has been true for many recent developments in machine
learning. When graphics processing units (GPUs) were repurposed for use in training deep
neural networks, they led to significant advances. This was largely due to GPUs' ability to
process more calculations per second than traditional CPUs (central processing units), and that
they could be combined together to increase performance even further. , The significance of13 14

this development was demonstrated when Google used 16,000 CPU cores in 2012 to classify

14Hooker, S. (2020) The Hardware Lottery, arXiv. http://arxiv.org/abs/2009.06489.

13Center for Security and Emerging Technology, Khan, S. andMann, A. (2020)AI Chips:What They Are andWhy TheyMatter.
Center for Security and Emerging Technology. https://doi.org/10.51593/20190014.

12Hooker, S. (2024) ‘On the Limitations of Compute Thresholds as a Governance Strategy’. arXiv.http://arxiv.org/abs/2407.05694.

11 See: European Commission (2023)Artificial Intelligence –Q&As.
https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_1683.

10Moretti, L., Dinu, R. and DiMascio, P. (2023) ‘Collision risk assessment between aircraft and obstacles in the areas surrounding
airports’,Heliyon, 9(7), p. e18378. https://doi.org/10.1016/j.heliyon.2023.e18378.

9 TheWorld Health Organization (no date) Low birth weight. https://www.who.int/data/nutrition/nlis/info/low-birth-weight.
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cats in images, only for a paper to be published a year later that solved the same task with just
two CPU cores and four GPUs. , Since then, the use of GPUs has become mainstream in15 16

machine learning, and the basis for many advances on AI model capabilities has been
associated with increasing, or “scaling”, the volume of compute used to train AI models.17

However, the amount of training compute is not the only variable that determines an AI
model’s capabilities. Increasingly, optimization and algorithmic developments determine
overall performance, meaning there are many variables that affect and influence an AI18

model’s capabilities, including:

● Data quality: A large body of research shows that improving the quality of data used to
train an AI model — through methods such as de-duplicating , or pruning , — can19 20 21 22

increase model capability and performance without needing to increase the amount of
compute.

● Model optimization: Recent progress in AI models has largely resulted from methods
to improve pre-trained models through techniques such as instruction fine-tuning, , ,23 24 25

model distillation using synthetic data from more performant models, , chain-of-26 27

thought reasoning, , increased context-length, enabled tool-use, , retrieval28 29 30 31 32

32Wang, G. et al. (2023) ‘Voyager: AnOpen-Ended Embodied Agent with Large LanguageModels’. arXiv.
https://doi.org/10.48550/arXiv.2305.16291.

31Qin, Y. et al. (2023) ‘ToolLLM: Facilitating Large LanguageModels toMaster 16000+ Real-world APIs’. arXiv.
https://doi.org/10.48550/arXiv.2307.16789.

30Xiong,W. et al. (2023) ‘Effective Long-Context Scaling of FoundationModels’. arXiv.
https://doi.org/10.48550/arXiv.2309.16039.

29Hsieh, C.-Y. et al. (2023) ‘Distilling Step-by-Step! Outperforming Larger LanguageModels with Less Training Data and Smaller
Model Sizes’. arXiv. https://doi.org/10.48550/arXiv.2305.02301.

28Wei, J. et al. (2023) ‘Chain-of-Thought Prompting Elicits Reasoning in Large LanguageModels’. arXiv.
https://doi.org/10.48550/arXiv.2201.11903.

27Aryabumi, V. et al. (2024) ‘Aya 23: OpenWeight Releases to FurtherMultilingual Progress’. arXiv.
https://doi.org/10.48550/arXiv.2405.15032.

26GemmaTeam et al. (2024) ‘Gemma: OpenModels Based onGemini Research and Technology’. arXiv.
https://doi.org/10.48550/arXiv.2403.08295.

25 Singh, S. et al. (2024) ‘Aya Dataset: AnOpen-Access Collection forMultilingual Instruction Tuning’. arXiv.
http://arxiv.org/abs/2402.06619.

24Honovich, O. et al. (2023) ‘Unnatural Instructions: Tuning LanguageModels with (Almost) No Human Labor’, in Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics.ACL 2023, Toronto, Canada: Association for
Computational Linguistics, pp. 14409–14428. https://doi.org/10.18653/v1/2023.acl-long.806.

23Mishra, S. et al. (2022) ‘Cross-Task Generalization via Natural Language Crowdsourcing Instructions’, in S. Muresan, P. Nakov,
and A. Villavicencio (eds) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers).ACL 2022, Dublin, Ireland: Association for Computational Linguistics, pp. 3470–3487.
https://doi.org/10.18653/v1/2022.acl-long.244.

22Marion, M. et al. (2023) ‘When Less is More: Investigating Data Pruning for Pretraining LLMs at Scale’. arXiv.
http://arxiv.org/abs/2309.04564.

21 Sorscher, B. et al. (2023) ‘Beyond neural scaling laws: beating power law scaling via data pruning’. arXiv.
http://arxiv.org/abs/2206.14486.

20 Lee, K. et al. (2022) ‘Deduplicating Training DataMakes LanguageModels Better’. arXiv.
https://doi.org/10.48550/arXiv.2107.06499.

19Hernandez, D. et al. (2022) ‘Scaling Laws and Interpretability of Learning fromRepeated Data’. arXiv.
https://doi.org/10.48550/arXiv.2205.10487.

18 Hooker, S. (2024) ‘On the Limitations of Compute Thresholds as a Governance Strategy’. arXiv.http://arxiv.org/abs/2407.05694.

17Amodei, D. and Hernandez, D. (2018) AI and compute. https://openai.com/index/ai-and-compute/.

16Coates, A. et al. (2013) ‘Deep learning with COTSHPC systems’, in Proceedings of the 30th International Conference on
Machine Learning. International Conference onMachine Learning, PMLR, pp. 1337–1345.
https://proceedings.mlr.press/v28/coates13.html.

15 Le, Q.V. et al. (2012) Building high-level features using large scale unsupervised learning, arXiv. Available at:
https://doi.org/10.48550/arXiv.1112.6209.
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augmented generation, , or reinforcement learning from human feedback. , ,33 34 35 36 37

These methods can yield improvements in model capability without necessarily
requiring a concurrent increase in the amount of compute used to train a model.

● Novel model architectures:Major advances in model capabilities have been the
product of advances in the underpinning algorithmic structure of an AI model, and not
always reliant on increases in training compute. For example, the invention of
convolutional neural networks in 2012 was fundamental to advances machine image
recognition, , as was the invention of transformer architecture, which led to the38 39

explosion in large language models in 2017.40

In addition to other variables that affect model performance, some research has begun to
suggest that increasing compute does not always lead to increasing model capability.
Studies have shown a level of redundancy in model weights: a significant proportion could be
removed without affecting performance, and a small subset of weights can accurately predict41

almost the full network. Additionally, research has found instances where as training compute42

increases, model performance actually decreases. Such findings further complicate43

understanding of the relationship between compute and model performance.

The notion that greater compute does not necessarily yield greater capability is demonstrated
in the performance rates of recent models relative to their size, with an increasing number of
smaller models matching or outperforming larger ones. For example, Falcon 180B is
outperformed by far smaller open weights models such as Llama-3 8B, Command R+ 35B, and
Gemma 27B; and Aya 23 8B outperforms the much larger BLOOM 176B. These examples44

indicate an overall trend where larger models are not guaranteed to consistently outperform
smaller models (see Figure 1. below).

44 Hooker, S. (2024) ‘On the Limitations of Compute Thresholds as a Governance Strategy’. arXiv.http://arxiv.org/abs/2407.05694.

43McKenzie, I.R. et al. (2024) ‘Inverse Scaling:When Bigger Isn’t Better’. arXiv. https://doi.org/10.48550/arXiv.2306.09479.

42Denil, M. et al. (2014) ‘Predicting Parameters in Deep Learning’. arXiv. https://doi.org/10.48550/arXiv.1306.0543.

41Gale, T., Elsen, E. and Hooker, S. (2019) ‘The State of Sparsity in Deep Neural Networks’. arXiv. http://arxiv.org/abs/1902.09574.

40Vaswani, A. et al. (2023) ‘Attention Is All You Need’. arXiv. https://doi.org/10.48550/arXiv.1706.03762.

39Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ‘ImageNet Classification with DeepConvolutional Neural Networks’, in
Advances in Neural Information Processing Systems. Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

38Valueva, M.V. et al. (2020) ‘Application of the residue number system to reduce hardware costs of the convolutional neural
network implementation’,Mathematics and Computers in Simulation, 177, pp. 232–243.
https://doi.org/10.1016/j.matcom.2020.04.031.

37Dang, J. et al. (2024) ‘RLHFCan SpeakMany Languages: UnlockingMultilingual PreferenceOptimization for LLMs’. arXiv.
https://doi.org/10.48550/arXiv.2407.02552.

36Aakanksha et al. (2024) ‘TheMultilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm’. arXiv.
http://arxiv.org/abs/2406.18682.

35 Back to Basics: Revisiting REINFORCE Style Optimization for Learning fromHuman Feedback in LLMs,
https://arxiv.org/abs/2402.14740.

34 Pozzobon, L. et al. (2023) ‘Goodtriever: Adaptive ToxicityMitigation with Retrieval-augmentedModels’, in H. Bouamor, J. Pino,
and K. Bali (eds) Findings of the Association for Computational Linguistics: EMNLP 2023. Findings 2023, Singapore: Association
for Computational Linguistics, pp. 5108–5125. https://doi.org/10.18653/v1/2023.findings-emnlp.339.

33 Lewis, P. et al. (2021) ‘Retrieval-AugmentedGeneration for Knowledge-Intensive NLP Tasks’. arXiv.
https://doi.org/10.48550/arXiv.2005.11401.
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Figure 1. Models submitted to the OpenLLM leaderboard since April 2022. Smaller models
(fewer than 13bn parameters) consistently match or outperform larger models.45

In sum, increasing the amount of compute to train an AI model has historically yielded
advances in model capability, but evidence that it is the only or primary determinant of
model capability is not robust, and an emerging body of research suggests that
increasing compute does not always increase capability.

This means that in both the near- and long-term increasing numbers of models that fall well
below a training compute-threshold may be more capable and performant than models above
those thresholds, yet face less regulatory oversight. This may even create incentives for model
developers to use techniques to increase performance without increasing compute, in order to
remain below thresholds.

2.2 Compute =/= Risk: Factors Beyond Capability Affect AI Model
Risk
The second assumed relationship underpinning the rationale for compute-based thresholds for
risk is that as a model’s capability increases, so do the associated risks. This is based on the
notion that as AI models become more capable — i.e., able to perform a wider range of
complex tasks or actions and with increasing success, scale, and speed — the risks of harm as a
consequence of these capabilities amplifies. ,46 47

47 Shevlane, T. et al. (2023)Model evaluation for extreme risks. Google DeepMind. http://arxiv.org/abs/2305.15324.

46 Sastry, G. et al. (2024)Computing Power and the Governance of Artificial Intelligence. Centre for the Governance of AI.
https://cdn.governance.ai/Computing_Power_and_the_Governance_of_AI.pdf.

45 Hooker, S. (2024) p6.
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However, even if the amount of training compute were a reliable and dominant variable for
predicting model performance, there are several additional factors to understanding model
risk that training compute and capability alone do not capture:

● Dataset composition: AI models are trained on vast quantities of data to learn and
understand patterns in that data that they can replicate in their behavior and outputs.
This means that any risks inherent to the dataset — such as the presence of toxic
language, hate speech, societal biases, stereotypical representations, or information
that is sensitive in terms of safety to individuals, communities, organizations, or nations
— may become embedded in the model and affect its behavior. , These dataset risks48 49

are independent of the amount of compute and model capability; a model trained on
harmful data can exhibit harmful outputs with comparatively low levels of compute or
performance, including existing models that likely fall below the thresholds in either the
White House Executive Order or the EU AI Act.50

● Deployment context: The risks of AI models manifest not only through the
development of the model itself, but also through the application of that model into
products and environments where real-world harms can be caused by errors or
undesirable model behavior. For example, the risks presented by a large language51

model used to search documents in a historical database might be very different to the
risks of a similar model used to automate the summarisation of hospital patients’ clinical
notes. Moreover, these risks may occur regardless of the amount of compute used to
train the model: a “low-compute” model can still cause harm if deployed irresponsibly.
Compute-based thresholds for determining AI risk fail to account for this, and as such,
they are not dissimilar to assessing the risks of electricity by measuring wattage — the
risks associated with a certain amount of wattage vary depending on whether it is
applied to a refrigerator, a lightbulb, or a dangling live wire. Those risks are further
dependent on the many infrastructural components of these contexts, such as the
quality of wiring, in-built safety features like circuit breakers, and so on. Indeed, many
emerging regulatory frameworks — including the EU AI Act — recognise how AI systems
may be deemed high-risk due to their deployment contexts, regardless of the amount of
training-compute associated with them.

● Optimizing models for safety: Across different stages of model training development,
various technical methods can be applied to address potential risks. There are many
examples of such methods, including safety context distillation, , training on52 53

values-targeted datasets, reinforcement learning from human feedback, or54 55

55A. Glaese, et al, (2022) "Improving alignment of dialogue agents via targeted human judgements" ;
https://doi.org/10.48550/arXiv.2209.14375.

54 Solaiman, I. and Dennison, C. (2021) ‘Process for Adapting LanguageModels to Society (PALMS) with Values-Targeted
Datasets’. https://cdn.openai.com/palms.pdf.

53DeepGanguli et al (2022). Red teaming languagemodels to reduce harms: Methods, scaling behaviors, and lessons learned.
https://arxiv.org/abs/2209.07858.

52Amanda Askell, et al. (2021) A general language assistant as a laboratory for alignment. https://arxiv.org/abs/2112.0.0861.

51 Solaiman, I. et al. (2023) ‘Evaluating the Social Impact of Generative AI Systems in Systems and Society’. arXiv.
https://doi.org/10.48550/arXiv.2306.05949.

50 Solaiman, I. et al. (2023) ‘Evaluating the Social Impact of Generative AI Systems in Systems and Society’.
https://doi.org/10.48550/arXiv.2306.05949.

49 Pozzobon, L. et al. (2024) ‘FromOne toMany: Expanding the Scope of ToxicityMitigation in LanguageModels’. arXiv.
http://arxiv.org/abs/2403.03893.

48 Suresh, H. andGuttag, J. (2021) ‘A Framework for Understanding Sources of Harm throughout theMachine Learning Life
Cycle’, in Proceedings of the 1st ACMConference on Equity and Access in Algorithms, Mechanisms, andOptimization. New York,
NY, USA: Association for ComputingMachinery (EAAMO ’21), pp. 1–9. https://doi.org/10.1145/3465416.3483305.
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“un-learning” harmful behaviors. These methods are part of the process of optimizing56

model performance for certain desired qualities — safety or otherwise — and they are a
key component of developing capable and performant AI models across industry,
academia, and beyond.

Compute-based thresholds by themselves are not able to account for the factors outlined
above, meaning they fail to consider a full and comprehensive picture of risks associated with
an AI model. This means that where compute-based thresholds are used they would benefit
from being complemented with additional measures which can assess factors including dataset
composition, deployment context, and safety optimization — and likely many other
non-compute related factors not considered here; the above is not necessarily an exhaustive
list.

2.3 Limitations of FLOPs as a Measure
The primary limitations of compute-based thresholds are associated with the unclear
relationships between compute, capability, and risk, as outlined above. However, it is important
to note that FLOPs as a measure also introduce several limitations, many of which are
associated with technical questions associated with how they are calculated.

For example, certain model structures complicate how FLOPs are calculated. For57

example, “mixtures of experts” combine independently trained models and enable inputs to be
routed according to the characteristics of each “expert” model. Similarly, cascading model58

systems that are common in existing AI applications combine models such that the output of
one becomes the input of another. Summing the total FLOPs used to train all component59

models in a mixture or cascade could lead to disproportionately high measures relative to the
risk posed by an individual model or system, while counting the compute associated with each
expert or model individually may fail to account for the overall risk posed by a mixture of
experts or cascading system. This is not an insurmountable issue, but instead points to the
need for much greater specificity in governance frameworks around how FLOPs should be
calculated.60

It is also not clear how FLOP measures work with decentralized training and other
downstream optimization. For example, where machine learning models are developed by
multiple parties — such as finetuning an open source model — it is challenging to accurately
measure the FLOPs across the entire life-cycle. This is especially true for models trained in a
decentralized, privacy-preserving manner, where training hardware belongs to multiple
participants. Additionally, many recent efforts show that performance gains can come from
applying compute outside of model training, such as through best-of-n sampling techniques,61

61Gemini Team. (2024) ‘Gemini: A Family of Highly CapableMultimodal Models’. arXiv. https://doi.org/10.48550/arXiv.2312.11805.

60 ​​Frontier Model Forum (2024) ‘Issue Brief: Measuring Training Compute’.
https://www.frontiermodelforum.org/updates/issue-brief-measuring-training-compute/.

59 Paleyes, A., Urma, R.-G. and Lawrence, N.D. (2023) ‘Challenges in DeployingMachine Learning: a Survey of Case Studies’,ACM
Computing Surveys, 55(6), pp. 1–29. https://doi.org/10.1145/3533378.

58 Zadouri, T. et al. (2023) ‘PushingMixture of Experts to the Limit: Extremely Parameter EfficientMoE for Instruction Tuning’.
arXiv. https://doi.org/10.48550/arXiv.2309.05444.

57Hooker, S. (2024) ‘On the Limitations of Compute Thresholds as a Governance Strategy’. arXiv. http://arxiv.org/abs/2407.05694.

56N. Li, A. Pan, A. Gopal, S., D. Hendrycks, et al. (2024) TheWMDPBenchmark: Measuring and ReducingMalicious UseWith
Unlearning, arXiv:2403.03218, https://doi.org/10.48550/arXiv.2403.03218.
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chain-of-thought reasoning, and model distillation using synthetic data. , It is not yet clear62 63 64

how such approaches, which may alter a model's risk profile, would be accounted for by
measuring training FLOPs.

Additionally, few existing models are known to meet or exceed currently set FLOPs
thresholds (1026 FLOPs or 1023 for models using biological sequence data in the White House
Executive Order and 1025 in the EU AI Act). This is sensible if the goal is to set prospective
thresholds to address potential future risks. However, this fails to recognise near-term,
real-world risks associated with current models that fall below these thresholds, such as
confabulations, mis- or disinformation, information harms, bias, and toxicity. ,65 66

FLOP counts vary significantly across AI model modalities. For example, code models and
biological models have typically used less compute than large language models. , And67 68

multilingual models — language models that work across multiple natural languages — tend to
be larger as they require more compute for each additional language covered. ,69 70

Compute-thresholds which fail to account for these variations in the compute needs of
different modalities may result in disproportionate regulatory burden across different types of
AI model. The graphs in Figure 2., below, show these variations between the compute needs of
some of the largest language models compared to many other models of different modalities.

Figure 2. Two graphs showing that, of the notable AImodels released between 2010 and 2024, languagemodels
have used considerablymore training compute than any othermodality.71

71Hooker, S. (2024) ‘On the Limitations of Compute Thresholds as a Governance Strategy’. arXiv. http://arxiv.org/abs/2407.05694.
p12.

70Aryabumi, V. et al. (2024) ‘Aya 23: OpenWeight Releases to FurtherMultilingual Progress’. arXiv.
https://doi.org/10.48550/arXiv.2405.15032.

69Üstün, A. et al. (2024) ‘AyaModel: An Instruction FinetunedOpen-AccessMultilingual LanguageModel’. arXiv.
http://arxiv.org/abs/2402.07827.

68Maug, N. (2024) Biological SequenceModels in the Context of the AI Directives, Epoch AI.
https://epochai.org/blog/biological-sequence-models-in-the-context-of-the-ai-directives.

67 Lin, J. et al. (2024) ‘Scaling Laws Behind Code UnderstandingModel’. arXiv. http://arxiv.org/abs/2402.12813.

66Weidinger, L. et al. (2021) ‘Ethical and social risks of harm from LanguageModels’. arXiv. http://arxiv.org/abs/2112.04359.

65 Privitera, D. et al. (2024) ‘International Scientific Report on the Safety of Advanced AI - Interim Report’.
https://www.gov.uk/government/publications/international-scientific-report-on-the-safety-of-advanced-ai.

64 Shimabucoro, L. et al. (2024) ‘LLMSee, LLMDo: Guiding Data Generation to Target Non-Differentiable Objectives’. arXiv.
https://doi.org/10.48550/arXiv.2407.01490.

63 Aryabumi, V. et al. (2024) ‘Aya 23: OpenWeight Releases to FurtherMultilingual Progress’. arXiv.
https://doi.org/10.48550/arXiv.2405.15032.

62Wei, J. et al. (2023) ‘Chain-of-Thought Prompting Elicits Reasoning in Large LanguageModels’. arXiv.
https://doi.org/10.48550/arXiv.2201.11903.
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These considerations do not render FLOPs entirely invalid as a measure; indeed they remain
commonly used within the field of computer science during model development and training to
assess hardware needs or training timeframes. However, the ambiguities around FLOPs
measures need to be resolved to ensure they are used in a fair, consistent, and effective way.72

This could involve developing clear guidance and standards for how FLOPs should be calculated
in practice.

72 ​​Frontier Model Forum (2024) ‘Issue Brief: Measuring Training Compute’.
https://www.frontiermodelforum.org/updates/issue-brief-measuring-training-compute/.
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3. Conclusion: Consequences of Compute
Thresholds

Compute-based thresholds offer a quantifiable and standardized metric that holds appeal for
policymakers and regulators when assessing which AI models or systems pose greater risk.
However, the relationship between training compute, model capability, and risk is complex and
nonlinear. This not only undermines their effectiveness and suitability, but could lead to several
undesirable consequences that weaken risk management and hinder innovation:

● Gamification: One potential consequence is that model developers are incentivised to
discover ways to game the training compute threshold to avoid triggering additional
regulatory burden. For example, keeping the volume of biological sequence data low to
avoid classification as a biological model (and being subject to a lower compute
threshold per the White House Executive Order), or throttling the amount of training
compute where possible and using methods of model optimization to improve
performance while keeping below thresholds.

● Applying disproportionate scrutiny: As smaller models continue to become more
performant, models that could pose greater risk may face relatively less regulatory
scrutiny because they fall underneath a static compute threshold. This means
compute-based thresholds may result in false positives or negatives that incorrectly
categorize models as higher or lower risk, leading to disproportionate allocation of
regulatory and developer resources to models that involve large amounts of training
compute, but may not actually pose greater risk.

● Distracting regulatory and safety resources: Compute thresholds that are based on
the assumption that model capability is the primary determinant of risk ignore other key
factors, such as training data, deployment context, and safety optimization practices.
This means that rather than focusing on systemic risks such as bias, misinformation, or
toxic representations, safety teams within organizations developing models may be
forced to deal with arbitrary requirements that prioritize hypothetical and un-evidenced
risks over more tangible ones. This misalignment of priorities and resources could
hinder the progress of crucial science-backed and applied AI safety work.

These consequences do not mean that compute thresholds are entirely without merit, and nor
do current approaches that rely on them fail to consider any limitations; indeed, many
proponents recognize that compute-based thresholds are an imperfect proxy for risk.
Nevertheless, the consideration of any threshold — proxy or otherwise — should occur with a
full understanding of its limitations and their consequences.
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4.1 Considerations for Policymakers
To account for the limitations of compute thresholds and their consequences, policymakers
can consider:

● Developing dynamic rather than static thresholds, for example by focusing on
models which score within the upper percentiles on a set of regularly-updated
benchmarks for capability, safety, or risk. This would more appropriately capture
highly capable and higher-risk models by comparing new models to existing
top-performing ones. It would also reduce the need for policymakers to frequently
revisit, revise, and redefine a static threshold as the state of the art develops.
Categorizing such dynamic thresholds by modality would further increase their
specificity and effectiveness, as they would discern between models with similar
characteristics.

● Developing alternative approaches to assessing which AI models should face
greater levels of scrutiny, to complement training compute measures.Multiple
metrics or criteria should be considered to determine model risk, to reduce the
impact of the limitations of any single metric. Examples of these could include
assessments of a model’s specific deployment context, qualitative assessments of risk
based on taxonomies of different types of harm, assessments of how many people
may be impacted by an AI model, and so on.

● Specifying and more clearly defining approaches to calculating and measuring
FLOPs where they continue to be used, for example by establishing industry-wide
standards and guidance that account for all stages of model training, quantized
models, architectures such as mixture of experts, ensembles, or cascading models,
and downstream post-training or fine-tuning.

Exploration of alternative and complementary approaches to risk thresholding remains an
ongoing focus for researchers across industry, academia, and the public and non-profit
sectors. This primer has focused on detailing some of the limitations of compute-based
thresholds in order to bring additional evidence and perspectives to ongoing work of
policymakers, regulators, researchers, and developers working to assess and manage the
risks of AI models.
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